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Abstract: This paper identifies two conspicuous regions in the North Atlantic
by clustering, These regions show strongly above-average and strongly below-
average warming, respectively, and might therefore be useful for the
monitoring of changes in the strength of the AMOC. The first region, which
lies in the north of the subpolar gyre, has so far defied global warming.
However, the results of a seasonal analysis indicate a recent rise in temperature
in the months from July to October. If this upward trend continues, it will
mask the large AMO fluctuations, which contribute significantly to the
variance and auto-correlation of northern temperature time series. The
common use of increases in these second moments as early-warning signs for
an imminent AMOC collapse will then be deprived of its basis. Moreover,
empirical evidence suggests that past increases were erratic and not steady,
which makes it fundamentally impossible to predict the time of a possible
AMOC collapse by extrapolation.

Keywords: Global warming, AMOC collapse, early-warning signs, variance,
autocorrelation.

1. INTRODUCTION

The circulation in the North Atlantic is caused by differences in temperature
and salinity. The Gulf Stream, which is a part of this circulation, transports
a large amount of heat from the south to the north. A weakening of the
Gulf Stream might therefore entail a cooling in the north and a warming in
the south or, in the presence of global warming, an accelerated warming in
the south and a delayed warming in the north. Carrying out simulations
with a global climate model, Latif et al. (2004) indeed found a relationship
in the low-frequency range between the North Atlantic thermohaline
circulation and the sea surface temperature (SST) in a specific northern
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region (40°–60°N and 50°–10°W; see the dotted region in Figure 1). Therefore,
they proposed a simple method to monitor future changes in this circulation,
which consists of just observing sea surface temperatures in that particular
region or (because of global warming) rather temperature differences
between more northern and more southern regions. Fittingly, Rahmstorf et
al. (2015) defined a proxy for the Atlantic Meridional Overturning Current
(AMOC) as the difference between the mean temperature in a certain
northern region, which they called “subpolar gyre” and which contains the

Figure 1: Identification of nine clusters (purple, blue, turquoise, green, yellow green,
yellow, red, orange, brown) of grid points with similar temperature trends. The gray

points do not form an independent cluster. They were left out because of missing
values after December 1873.
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17 grid points represented by circles with black borders in Figure 1, and the
Northern Hemisphere mean surface temperature. The significance of such
a proxy stems from the fact that direct measurements of the AMOC are
only available for relatively short periods (Smeed et al., 2014), which makes
it impossible to distinguish between multidecadal oscillations and longer-
term trends. With the help of simulations, Caesar et al. (2018) identified a
characteristic SST fingerprint of an AMOC slowdown, which consists of a
cooling in the subpolar gyre region and a warming along the US northeast
coast and is most pronounced during winter and spring. However, they
based their AMOC proxy only on the former region because of too much
variability in the latter region. It is defined as the mean SST in the subpolar
gyre from November to May minus the global mean SST from November
to May.

The subpolar gyre is characterized by a weaker increase in the
temperature compared to other regions. In the presence of long cycles with
large amplitudes, the widely used linear trend model is unsuitable for the
quantification of this increase. It will inevitably confuse a slight increase
with a decrease if the series starts at the maximum of a cycle or ends at the
minimum of a cycle. The respective study period obviously plays a major
role in this context. For example, Latif et al. (2004), Rahmstorf et al. (2015),
and Caesar et al. (2018) studied the periods 1870–1998, 1901–2000, and
1870–2016, respectively. In the next section, a more sophisticated
investigation will be carried out. Both the long-term trend and various
cycles will be taken into account for the identification of clusters with
similar temperature trends. The suitability of the cluster classification for
the purpose of assessing and forecasting the AMOC strength will be
examined in Section 3. The discussion in Section 4 addresses seasonal and
bivariate aspects and concludes.

2. CLUSTERING

For the statistical analysis, I used the free statistical software R (R Core Team,
2022) and the global land and ocean dataset HadCRUT5 Analysis (from
https://crudata.uea.ac.uk/cru/data/temperature/), which combines land
[CRUTEM5] and marine [HadSST4] temperature anomalies on a 5° by 5°
grid with greater geographical coverage via statistical infilling (Morice et
al., 2021). This dataset has been developed by the Climatic Research Unit
(University of East Anglia and NCAS) jointly with the Hadley Centre (UK
Met Office). The temperatures are expressed as anomalies from the base
period 1961-1990. The average temperature for each calendar month in the
base period is regarded as normal. The complete series of anomalies are
shown for all 90 grid points in Figure 2.
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Figure 2: Individual series of anomalies at grid points 1-45 in the first column and
46-90 in the second column. Colors indicate cluster affiliations. The gray

series have missing values after December 1873.

The nine clusters of grid points shown in Figure 1 were obtained by
first smoothing the individual series of anomalies from January 1874 to July
2023 with the help of the Hodrick-Prescott (HP) filter (using the R function
hpfilter of the package mFilter) and then performing k-means clustering on
the smoothed series (choosing the Hartigan–Wong algorithm for the R
function kmeans). The HP trend Ft of the series X1, ..., Xn is obtained by
minimization of

2 2
1 3 1 1 2( ) (( ) ( )) ,n n

t t t t t t t tX F F F F F� � � � �� � � �� � � � (1)

where the tuning parameter � determines the degree of smoothing. For the
series of anomalies, the value ��= 107 was used. For each cluster, the
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individual HP trends are shown in Figure 3. Obviously, the agreement
within a cluster is very strong. The smooth lines shown in Figure 4 represent
clusterwise averages.

Figure 3: PoIynomial temperature trends for each grid point grouped by clusters (a:
purple cluster, b: blue cluster, c: turquoise cluster, d: green cluster, e: yellow green

cluster, f: yellow cluster, g: red cluster, h: orange cluster, i: brown cluster)
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The small red cluster (with only three grid points) along the US northeast
coast and the larger turquoise cluster (with ten grid points) below Greenland
show strongly above-average and strongly below-average warming,
respectively, and are therefore the natural candidates to indicate a
weakening of the AMOC. The next best candidates are the yellow green
cluster and the orange cluster, respectively.

3. EARLY-WARNING SIGNS

As mentioned earlier, the difference between the mean temperature in the
subpolar gyre, which contains the turquoise cluster as a subset, and some

Figure 4: Clusterwise temperature trends (a: purple cluster, b: blue cluster, c:
turquoise cluster, d: green cluster, e: yellow green cluster, f: yellow

cluster, g: red cluster, h: orange cluster, i: brown cluster)
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global or hemispheric benchmark has already been proposed as a proxy for
the AMOC strength. The Northern Hemisphere mean surface temperature
was used as benchmark by Rahmstorf et al. (2015), the global mean SST by
Caesar et al. (2018), and two times the global mean SST by Ditlevsen and
Ditlevsen (2023). The factor 2 in the last benchmark was justified by polar
amplification (see Holland and Bitz, 2003). Using several SST-based and
salinity-based AMOC proxies, Boers (2021) found early-warning signs, such
as increasing variance and autocorrelation, that the AMOC could be close
to a critical transition to a weaker circulation mode. Ditlevsen & Ditlevsen
(2023) went even further and extrapolated the sample autocorrelation of
their detrended proxy in order to determine when this critical transition
will happen. However, Reschenhofer (2023) questioned the reliability of a
forecast made in this way because of its critical dependence on the adequacy
of the underlying statistical model, the plausibility of certain assumptions,
the quality of the involved approximations, the arbitrary choice of the
AMOC proxy, the method of trend estimation, the size of the rolling window
used for the estimation of the second moments, the determination of the
start time of ramping, etc. Changing only a single specification was enough
to move the predicted time of the AMOC collapse by several decades.
Perhaps the most serious point of criticism was that the autocorrelation
appears to increase erratically rather than steadily which would make
forecasting based on extrapolation impossible.

Before we can estimate the variance and the autocorrelation, we must
first look at the trend. In the first three of its columns, Figure 5 shows a kind
of trend decomposition separately for each cluster. The HP trend Ft

(1) for
the cluster means Xt (with ��= 2.5 � 109) is the first component, the HP trend
Ft

(2) for the deviations Dt = Xt – Ft
(1) (with ��= 2.5 � 107) is the second

component, and the HP trend Ft
(3) for the deviations Vt = Dt – Ft

(2)  (with ��=
2.5 � 106) is the third component. However, only the first component could
possibly be interpreted as a trend in the strict statistical sense. The second
corresponds rather to an oscillation with large but varying amplitudes and
long but varying periods (such as the Atlantic Multidecadal Oscillation)
and appears as a peak at the second Fourier frequency in the periodogram
of the detrended series Dt (see the last column of Figure 5). The third also
looks like a fairly regular oscillation and appears as a somewhat smaller
peak at the 7th Fourier frequency.

For a more in-depth analysis, the four most conspicuous clusters
(turquoise, yellow green, red, and orange) were selected first. Then, for
each of these clusters, the HP trend with was obtained from the cluster
means and the trend residuals were calculated. Finally, the statistics and ,
where
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(see Reschenhofer, 2017a, 2017b, 2019), were plotted cumulatively
against time. The advantage of this approach is that changes in the variance
and the first-order autocorrelation can be detected without any delay caused
by an estimation window. In contrast, windows of width 50 and 70 years
were used by Ditlevsen and Ditlevsen (2023) and Boers (2021), respectively.
The bias of the autocorrelation estimator does not really bother as long as
only changes in the autocorrelation are of interest. There are no indications
of a steadily growing variance or autocorrelation in the second and fourth
column of Figure 6. An occasional change in the slope of a cumulative plot

Figure 5: Clusterwise long-term temperature trends (first column), lower-frequency
oscillations (second column), higher-frequency oscillations (third column) and first

ten periodogram ordinates of detrended temperature series (fourth column)
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is certainly not suspicious and can in any case be better explained by a
structural break.

Not surprisingly, choosing a much smaller value of the smoothing
parameter (such as ), which fails to remove the multidecadal oscillations
from the trend, yields both a smaller variance and a smaller autocorrelation
(see Figure 6). Differencing is an alternative way to get rid of the trend.
However, this transformation will usually turn a positive autocorrelation
into a negative one. Moreover, we may expect that the autocorrelation of
the differenced series vanishes as the autocorrelation of the original series
approaches 1. The cumulative plots created for the first differences bring
no surprises. Also, their normalized cumulative periodograms do not exhibit
any features of interest. They are largely linear apart from a power deficiency
near frequency zero which is due to differencing. In contrast, the normalized

Figure 6: For the turquoise, yellow green, red, and orange cluster as well as for the
subpolar gyre, two HP trends are shown in the first column, the cumulative squared
trend residuals in the second column, the normalized cumulative periodogram of the

residuals in the third column, and a cumulative upward-biased measure of
autocorrelation in the fourth column. The green lines were obtained by

replacing the trend residuals by first differences.
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cumulative periodograms of the trend residuals indicate a peak at frequency
zero, which also was to be expected in view of the presence of long cycles.

Not much changes when the same analysis is carried out again after
subtracting two times the global mean SST from the cluster means (see Figure
7). There is still no clear indication of a steady increase in variance or
autocorrelation, which is also in line with the results obtained with the time
series A0 (subpolar gyre) and A2 (AMOC proxy) that were kindly provided
by Ditlevsen and Ditlevsen (2023) online in a repository (see the last rows
of Figures 6 and 7, respectively).

 The contribution of the Atlantic Multidecadal Oscillation (AMO) to
the variance and the auto-correlation is illustrated in Figure 8. The anomalies
of the turquoise cluster are shown together with two fitted HP trends
obtained with and , respectively. The first represents the long-term trend

Figure 7: For each AMOC proxy based on the turquoise, yellow green, red, and orange
cluster as well as on the subpolar gyre, respectively, two HP trends are shown in the

first column, the cumulative squared trend residuals in the second column, the
normalized cumulative periodogram of the trend residuals in the third column, and a

cumulative upward-biased measure of autocorrelation in the fourth column. The
green lines were obtained by replacing the trend residuals by first differences.
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and the second represents the AMO. In the northern part of the cluster (first
column of Figure 8), the amplitude of the last complete AMO cycle (with a
minimum slightly before 1990 and a maximum slightly after 2000) is
strikingly large. There is a big bunch of values far below the trend line
followed by another big bunch of values far above the trend line, which
provide exactly the right conditions for both a high variance and a high
autocorrelation in that period. However, it seems that the next AMO
minimum will be just below the trend line, which does not leave much room
for a further increase in variance and autocorrelation in the near future.
Moreover, the small size of the last bunch of values below the trend line
and the sharp temperature rise at the very end of the observation period
(particularly in the southern part of the cluster) suggest that global warming
is finally also catching up with the subpolar gyre. Rising temperatures have
already masked the AMO in more southern clusters decades ago (see Figure
4.g,h,i).

Figure 8: Anomalies of the turquoise cluster together with two fitted HP trends
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Figures 6 and 7 only give a rough impression of the change in variance
and autocorrelation. Focusing on a single grid point brings out more details.
For the grid point in the middle of the northern part of the turquoise cluster,
Figure 9 shows the cumulative squared trend residuals and the cumulative
squared first differences as well as cumulative measures of autocorrelation
both for the trend residuals and the first differences. In addition to the
statistic (2), which is based on only two observations, Burg’s estimator
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Figure 9: First row: Anomalies at grid point 16 (a: raw, b: minus two times the global
mean SST) together with fitted HP trend ( = 2.5 109 : red) and moving averages

(window size =55*12+1: yellow)



Reassessment of the Subpolar Gyre’s Predictive Power 129

Second row: Cumulative squared trend residuals (red) and cumulative
squared first differences (green)

Third row: Cumulative measures of autocorrelation for the trend
residuals (Reschenhofer, 2017a: red, Burg, 1967, 1975 with k = 2 and k = 3:
orange and brown, respectively) and the first differences (Reschenhofer,
2017a: green)

To make it easier to recognize structural breaks, suitable straight lines
have been subtracted from the cumulative graphs.
(Burg, 1967, 1975), which is based on k observations, is also included for
k = 2 and k = 3, respectively. Compared to the least squares estimator
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Burg’s estimator has the advantage that it does not take values outside
the open interval (-1,1) with positive probability. Although the individual
statistics, which are based on a very small number of observations, are
extremely volatile, any noticeable change in the slope of the cumulative
graph is a clear indication of a structural break. Overall, there appear to be
two breaks in the variance, one around 1950 and the second around 1980,
and at least one break in the autocorrelation around 1960. There are no
indications of a steadily growing variance or autocorrelation regardless of
whether the series of anomalies is used or the AMOC proxy, which is
obtained by subtracting two times the global mean SST.

4. DISCUSSION

Unlike other researchers, Caesar et al. (2018) incorporated seasonal aspects
into the definition of their AMOC proxy. In order not to overlook anything
important, it is therefore advisable to check whether there are any significant
differences between the various calendar months. Figure 10 shows the HP
trends () of the cluster means separately for each calendar month. The only
really noticeable pattern occurs in the first (purple) cluster during the “winter
months” (from December to March). In the more interesting third (turquoise)
cluster, there has recently been a slight warming in the “summer months”
(from July to October). Using only the period from November to May like
Caesar et al. (2018) might therefore indeed emphasize the different nature
of this cluster.

Defining an AMOC proxy as the difference of two temperature series
is, of course, not yet a bivariate analysis. For the sake of completeness, the
results of a cross spectral analysis for the clusters 3 (turquoise), 5 (yellow
green), 7 (red), 8 (orange) are therefore presented in Figure 11 (for a
univariate spectral analysis see, e.g., Mangat and Reschenhofer, 2020). The
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squared coherencies displayed below the main diagonal show no
conspicuous features, possibly apart from a peak near frequency zero in
the case of the cluster combination 3 & 5. To avoid artificial jumps (e.g,
from � to –�) caused by the non-uniqueness of the polar coordinates and
thereby improve the interpretability of the estimated phase spectra displayed
above the main diagonal, two additional versions of the phase spectra
obtained by adding and subtracting 2� have also been plotted. However, it
seems that none of the four series of cluster means is leading or lagging
because the phase spectra are pretty flat, at least in the frequency ranges
with higher cross correlation.

Main diagonal: periodograms (3, 5, 7, 8)
Above: phase spectra (3 & 5, 3 & 7, 3 & 8, 5 & 7, 5 & 8, 7 & 8), below:

squared coherencies
Also, the mere subtraction of a global or hemispheric benchmark from

a series of anomalies adds no real value when it comes to the monitoring of
early-warning signs for a weakening AMOC. Clearly, the short-term
fluctuations of the benchmark are not helpful in this respect. The same is
true for the long-term trend of the benchmark, which has to be removed

Figure 10: HP trends ( = 2.5 104) of the cluster means for each calendar month
(January: purple, February: blue, March: turquoise, April: green, May: yellow green,

June: red, July: pink, August: yellow, September: orange, October: brown, November:
gray, December: black)
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anyway when the variance and autocorrelation are calculated locally. It is
therefore not surprising that the first column of Figure 9 (without
subtraction) looks very much like the second column (with subtraction).
What remains is the observation that a certain region in the North Atlantic
appears to defy global warming, but only with the imposition of increasingly
severe regional and seasonal restrictions. Once the rise in temperature can
be observed everywhere and the AMO is masked by the upward trend,
there is little scope for a further increase in variance and autocorrelation,
which renders these early-warning signs obsolete. The sobering conclusion
is that it is currently impossible to make any reliable predictions with the
available data and methods.

Figure 11: Cross spectral analysis (width of modified Daniell smoother = 25) of the
detrended ( = 2.5 109) cluster means (3: turquoise, 5: yellow green, 7: red, 8: orange)
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